গণিত

কেন্দ্রীয় প্রবণতা (Central Tendency)

অষ্টম শ্রেণি (দাখিল) - গণিত - তথ্য ও উপাত্ত | NCTB BOOK

ধরা যাক, কোনো একটি সমস্যা সমাধানে ২৫ জন ছাত্রীর যে সময় (সেকেন্ডে) লাগে তা হলো

২২, ১৬, ২০, ৩০, ২৫, ৩৬, ৩৫, ৩৭, ৪০, ৪৩, ৪০, ৪৩, ৪৪, ৪৩, ৪৪, ৪৬, ৪৫, ৪৮, ৫০, ৬৪, ৫০, ৬০, ৫৫, ৬২, ৬০।

সংখ্যাগুলো মানের ঊর্ধ্বক্রমে সাজালে হয় :

১৬, ২০, ২২, ২৫, ৩০, ৩৫, ৩৬, ৩৭, ৪০, ৪০, ৪৩, ৪৩, ৪৩, ৪৪, ৪৪, ৪৫, ৪৬, ৪৮, ৫০, ৫০, ৫৫, ৬০, ৬০, ৬২, ৬৪। বর্ণিত উপাত্তসমূহ মাঝামাঝি মান ৪৩ বা ৪৪ এ পুঞ্জিভূত। গণসংখ্যা সারণিতে এই প্রবণতা পরিলক্ষিত হয়। বর্ণিত উপাত্তের গণসংখ্যা নিবেশন সারণি তৈরি করলে হয়

ব্যাপ্তি১৬-২৫২৬-৩৫৩৬-৪৫৪৬-৫৫৫৬-৬৫
গণসংখ্যা১০

এই গণসংখ্যা নিবেশন সারণিতে দেখা যাচ্ছে ৩৬-৪৫ শ্রেণিতে গণসংখ্যা সর্বাধিক। সুতরাং উপরের আলোচনা থেকে এটা স্পষ্ট যে, উপাত্তসমূহ মাঝামাঝি বা কেন্দ্রের মানের দিকে পুঞ্জিভূত হয়। মাঝামাঝি বা কেন্দ্ৰে মানের দিকে উপাত্তসমূহের পুঞ্জিভূত হওয়ার প্রবণতাকে কেন্দ্রীয় প্রবণতা বলে। কেন্দ্রীয় মান উপাত্তসমূহের প্রতিনিধিত্বকারী একটি সংখ্যা যার দ্বারা কেন্দ্রীয় প্রবণতা পরিমাপ করা হয়। সাধারণভাবে, কেন্দ্রীয় প্রবণতার পরিমাপ হলো (১) গাণিতিক গড় বা গড় (২) মধ্যক (৩) প্রচুরক।

Content added || updated By
Promotion